
JANUS: Fast and Flexible Deep Learning
via Symbolic Graph Execution of Imperative Programs

Eunji Jeong, Sungwoo Cho, Gyeong-In Yu,
Joo Seong Jeong, Dong-Jin Shin, Byung-Gon Chun

1Demo

Deep Learning (DL) Models

2

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

Multilayer Perceptron

Convolutional Neural Networks

Recurrent Neural Networks Generative Adversarial Networks

Deep Reinforcement
Learning ModelsRecursive Neural Networks

Deep Learning (DL) Models

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

3

Deep Learning (DL) Frameworks

Define & Execute

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

4

Deep Learning (DL) Frameworks

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

5

imperative

2.0

Today’s Talk

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

6

imperative

2.0

JANUS (NSDI 2019)

Today’s Talk

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

7

imperative

2.0

JANUS (NSDI 2019,
SysML 2019)

Recursive Neural Networks
(EuroSys 2018)

Outline

● JANUS

● How to handle Recursive Neural Networks?

● On-going Works

8

Two Paradigms

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

9

imperative

2.0

Symbolic DL Frameworks Imperative DL Frameworks

Symbolic DL Frameworks

✓ Build a Symbolic Graph
✓ Execute the Graph

def build_graph(g):
 x = g.input(float)
 linear = g.add(g.mul(W, x), b)

build_graph(graph)
run_graph(graph, x_data)

Imperative DL Frameworks

✓ Directly Execute the Computations

Two Paradigms

x

Mul

Add

W

b

10

def linear(x):
 return W * x + b
linear(x_data)

imperative

Symbolic DL Frameworks

✓ Build a Symbolic Graph
✓ Execute the Graph

def build_graph(g):
 x = g.input(float)
 linear = g.add(g.mul(W, x), b)

build_graph(graph)
run_graph(graph, x_data)

Imperative DL Frameworks

✓ Directly Execute the Computations

Two Paradigms

x

Mul

Add

W

b

11

def linear(x):
 return W * x + b
linear(x_data)

imperative

Symbolic DL Frameworks

✓ Build a Symbolic Graph
✓ Execute the Graph

def build_graph(g):
 x = g.input(float)
 linear = g.add(g.mul(W, x), b)

build_graph(graph)
run_graph(graph, x_data)

Imperative DL Frameworks

✓ Directly Execute the Computations

Two Paradigms

x

Mul

Add

W

b

12

def linear(x):
 return W * x + b
linear(x_data)

def linear(x):
 return W * x + b
linear(x_data)

imperative

Symbolic DL Frameworks

✓ Build a Symbolic Graph
✓ Execute the Graph

def build_graph(g):
 x = g.input(float)
 linear = g.add(g.mul(W, x), b)

build_graph(graph)
run_graph(graph, x_data)

Imperative DL Frameworks

✓ Directly Execute the Computations

Two Paradigms

x

Mul

Add

W

b

13

def linear(x):
 return W * x + b
linear(x_data)

imperative

Imperative DL Frameworks

✓ Directly Execute the Computations

Symbolic DL Frameworks

✓ Build a Symbolic Graph
✓ Execute the Graph

def build_graph(g):
 x = g.input(float)
 linear = g.add(g.mul(W, x), b)

build_graph(graph)
run_graph(graph, x_data)

Two Paradigms

x

Mul

Add

W

b

14

def linear(x):
 return W * x + b
linear(x_data)

imperative

Imperative DL Frameworks

✓ Directly Execute the Computations

Symbolic DL Frameworks

✓ Build a Symbolic Graph
✓ Execute the Graph

def build_graph(g):
 x = g.input(float)
 linear = g.add(g.mul(W, x), b)

build_graph(graph)
run_graph(graph, x_data)

Two Paradigms

x

Mul

Add

W

b

15

def linear(x):
 return W * x + b
linear(x_data)

imperative

Symbolic DL Frameworks

+ Easy to Optimize
+ Compiler Optimization
+ Parallel Execution of Operations
+ Deploy on GPU, Cluster, Mobile, ...

- Decoupled View:
Hard to Program & Debug

Imperative DL Frameworks

+ Direct Execution:
Easy to Program & Debug

- Hard to Optimize

Pros & Cons

 Pros

 Cons

16

Performance Programmability

Symbolic DL Frameworks

+ Easy to Optimize
+ Compiler Optimization
+ Parallel Execution of Operations
+ Deploy on GPU, Cluster, Mobile,...

- Decoupled View:
Hard to Program & Debug

Imperative DL Frameworks

+ Direct Execution:
Easy to Program & Debug

- Hard to Optimize

Pros & Cons

 Pros

 Cons

17

Performance Programmability

Symbolic DL Frameworks

+ Easy to Optimize
+ Compiler Optimization
+ Parallel Execution of Operations
+ Deploy on GPU, Cluster, Mobile,...

- Decoupled View:
Hard to Program & Debug

Imperative DL Frameworks

+ Direct Execution:
Easy to Program & Debug

- Hard to Optimize

Pros & Cons

 Pros

 Cons

18

Performance Programmability

Symbolic DL Frameworks

+ Easy to Optimize
+ Compiler Optimization
+ Parallel Execution of Operations
+ Deploy on GPU, Cluster, Mobile,...

- Decoupled View:
Hard to Program & Debug

Imperative DL Frameworks

+ Direct Execution:
Easy to Program & Debug

- Hard to Optimize

Pros & Cons

 Pros

 Cons

19

Performance Programmability

Symbolic DL Frameworks

+ Easy to Optimize
+ Compiler Optimization
+ Parallel Execution of Operations
+ Deploy on GPU, Cluster, Mobile, ...

- Decoupled View:
Hard to Program & Debug

Imperative DL Frameworks

+ Direct Execution:
Easy to Program & Debug

- Hard to Optimize

Pros & Cons

 Pros

 Cons

20

Performance Programmability

Symbolic DL Frameworks

+ Easy to Optimize
+ Compiler Optimization
+ Parallel Execution of Operations
+ Deploy on GPU, Cluster, Mobile, ...

- Decoupled View:
Hard to Program & Debug

Imperative DL Frameworks

+ Direct Execution:
Easy to Program & Debug

- Hard to Optimize

Pros & Cons

 Pros

 Cons

21

Performance Programmability

Symbolic DL Frameworks

+ Easy to Optimize
+ Compiler Optimization
+ Parallel Execution of Operations
+ Deploy on GPU, Cluster, Mobile,...

- Decoupled View:
Hard to Program & Debug

Imperative DL Frameworks

+ Direct Execution:
Easy to Program & Debug

- Hard to Optimize

What People Want Is...

 Pros

 Cons

22

ProgrammabilityPerformance

Imperative DL Program

def foo(x):
 prod = mul(3, x)
 return add(prod, 2)

JANUS: Combining the Best of Both Worlds

23

Symbolic DL Graph

x

Mul

Add

3

2

“Easy Programmability” “High Performance”

Transparent
Conversion

JANUS: Combining the Best of Both Worlds

24

● 11 models in 5 major neural network categories:
○ Convolutional Neural Networks (CNN) LeNet, ResNet-50, Inception-v3
○ Recurrent Neural Networks (RNN) LSTM, LM
○ Recursive Neural Networks (TreeNN) TreeRNN, TreeLSTM
○ Generative Adversarial Networks (GAN) GAN, PIX2PIX
○ Deep Reinforcement Learning (DRL) A3C, PPO

● Up to 47.6x speedup compared to imperative DL framework,
comparable performance (within 4%) to symbolic DL framework
with unmodified imperative DL programs

Outline

● JANUS

○ Approach

○ Challenges

○ Our Solution

○ Evaluation

● How to handle Recursive Neural Networks?

● On-going Works

25

Challenges in Graph Conversion

26

Imperative DL Program

def foo(x):
 tmp = mul(3, x)
 return add(tmp, 2)

Transparent
Conversion

Symbolic DL Graph

x

Mul

Add

3

2

Challenges in Graph Conversion

27

Imperative Python DL Program

def foo(x):
 tmp = mul(3, x)
 return add(tmp, 2)

Transparent
Conversion

Symbolic DL Graph

x

Mul

Add

3

2

De-facto Standard Language
for DL Programming

Challenges in Graph Conversion

28

Imperative Python DL Program

def foo(x):
 tmp = mul(3, x)
 return add(tmp, 2)

Transparent
Conversion

Symbolic DL Graph

x

Mul

Add

3

2?

Discrepancy between Python Programs and DL Graphs

29

Transparent
Conversion?

“Dynamic” “Static”

Imperative Python DL Program

def foo(x):
 tmp = mul(3, x)
 return add(tmp, 2)

Symbolic DL Graph

x

Mul

Add

3

2

Transparent
Conversion

Discrepancy between Python Programs and DL Graphs

30

?
Characteristics
● determined at runtime
● change at runtime

“Dynamic” “Static”

Imperative Python DL Program

def foo(x):
 tmp = mul(3, x)
 return add(tmp, 2)

Symbolic DL Graph

x

Mul

Add

3

2

Transparent
Conversion

Discrepancy between Python Programs and DL Graphs

31

Symbolic DL Graph

INT, 10x1
x

INT, 10x1
Mul

INT, 10x1
Add

INT
3

INT
2

Characteristics
● must be given

when building a graph

?
Characteristics
● determined at runtime
● change at runtime

“Dynamic” “Static”

Imperative Python DL Program

def foo(x):
 tmp = mul(3, x)
 return add(tmp, 2)

Imperative Python DL Program

def foo(x):
 tmp = mul(3, x)
 return add(tmp, 2)

Transparent
Conversion

Discrepancy between Python Programs and DL Graphs

32

Symbolic DL Graph

INT, 10x1
x

INT, 10x1
Mul

INT, 10x1
ADD

INT
3

INT
2

Characteristics
● must be given

when building a graph

?
Characteristics
● determined at runtime
● change at runtime

“Dynamic” “Static”

DST:
NEED INFO

SRC:
NO INFO

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

Example: Recurrent Neural Network (RNN)

33

Correctness & Performance

of Graph Execution

Dynamic Features of Python

√ Dynamic Control Flow

√ Dynamic Types

√ Impure Functions

?

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

RNN Example

34

sawThey dogsseq[0]:

sheWas sick?seq[1]:

Dynamic Control Flow Dynamic Types Impure Function

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

RNN Example

35

RNN
Cell

sawThey dogs

state

out
[0]

seq[0]:

sheWas sick?seq[1]:

Dynamic Control Flow Dynamic Types Impure Function

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

RNN Example

36

RNN
Cell

RNN
Cell

sawThey dogs

state

out
[1]

out
[0]

seq[0]:

sheWas sick?seq[1]:

Dynamic Control Flow Dynamic Types Impure Function

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

RNN Example

37

RNN
Cell

RNN
Cell

RNN
Cell

sawThey dogs

state

out
[1]

out
[0]

out
[2]

seq[0]:

sheWas sick?seq[1]:

Dynamic Control Flow Dynamic Types Impure Function

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

RNN Example

38

Dynamic Control Flow Dynamic Types Impure Function

RNN Example

39

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

state

CellSwitch

Merge

i<N

Next

Dynamic Control Flow Dynamic Types Impure Function

RNN Example

● Correct

40

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

state

CellSwitch

Merge

i<N

Next

Dynamic Control Flow Dynamic Types Impure Function

RNN Example

● Correct
● Slow

41

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

state

CellSwitch

Merge

i<N

Next

Dynamic Control Flow Dynamic Types Impure Function

RNN Example

● Correct
● Slow

● Fast

42

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

state

CellSwitch

Merge

i<N

Next

Cell

state

Cell

Cell

Dynamic Control Flow Dynamic Types Impure Function

RNN Example

● Correct
● Slow

● Fast
● Incorrect
● Need Info

43

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

state

CellSwitch

Merge

i<N

Next

Cell

state

Cell

Cell

Dynamic Control Flow Dynamic Types Impure Function

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

RNN Example

44

RNN
Cell

RNN
Cell

RNN
Cell

sawThey dogs

state state

out
[1]

out
[0]

out
[2]

seq[0]:

sheWas sick?seq[1]:

Dynamic Control Flow Dynamic Types Impure Function

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

RNN Example

45

PlaceHolder
type: int
shape: ?

PlaceHolder
type: float

shape: ?...

● Correct
● Inefficient

Dynamic Control Flow Dynamic Types Impure Function

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

RNN Example

46

PlaceHolder
type: int

shape: (3x128)

● Correct
● Inefficient

● Fast
● Incorrect
● Need Info

...

Dynamic Control Flow Dynamic Types Impure Function

PlaceHolder
type: int
shape: ?

PlaceHolder
type: float

shape: ?

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

RNN Example

47

RNN
Cell

RNN
Cell

RNN
Cell

sawThey dogs

state state

out
[1]

out
[0]

out
[2]

seq[0]:

sheWas sick?seq[1]:

Dynamic Control Flow Dynamic Types Impure Function

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

RNN Example

48

RNN
Cell

RNN
Cell

RNN
Cell

sawThey dogs

state state

out
[1]

out
[0]

out
[2]

seq[0]:

sheWas sick?

state

seq[1]:

RNN
Cell

RNN
Cell

RNN
Cell

out
[1]

out
[0]

out
[2]

state

Dynamic Control Flow Dynamic Types Impure Function

class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

RNN Example

49

?

Dynamic Control Flow Dynamic Types Impure Function

Challenge:

achieving Correctness & Performance at the same time

Challenge Summary

50

Imperative Python DL Program
with Dynamic Features

Fast & Correct
Symbolic DL Graph?

Challenge:

achieving Correctness & Performance at the same time

Challenge Summary

51

Imperative Python DL Program
with Dynamic Features

Correct
Graph

Fast
Graph

Slow

Incorrect

Challenge:

achieving Correctness & Performance at the same time

Challenge Summary

52

Imperative Python DL Program
with Dynamic Features

Correct
Graph

Fast
Graph

Slow

Incorrect

 Outline

● JANUS

○ Approach

○ Challenges

○ Our Solution

○ Evaluation

● How to handle Recursive Neural Networks?

● On-going Works

53

 Solution: Speculative Graph Generation and Execution

● Goal: Correctness & Performance

● [Performance] Speculatively Specialize the Graph
○ Make reasonable assumptions based on the execution history (Profiling)
○ Run specialized graph (Common Case)

● [Correctness] Validate Assumptions
○ Fallback if an assumption is broken (Rare Case)

54

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

 Imperative Executor

Pre-defined DL Operations .Python Interpreter .

 Overall Workflow on JANUS

55

Fast Path
(Common Case)

Correct Path
(Rare Case)

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

 Imperative Executor

Pre-defined DL Operations .Python Interpreter .

Profiler

len:3

56

 Overall Workflow on JANUS

Modified Python Interpreter
for Transparent Profiling

Fast Path
(Common Case)

Correct Path
(Rare Case)

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations .Python Interpreter .

Profiler

Graph
Generator

57

 Overall Workflow on JANUS

Cell

state

Cell

Cell

Optimize Graph with
Profile Information

Standard Compiler Pass
● Reaching Definition Analysis
● Type inference
● Constant Propagation
● ...

len:3

Fast Path
(Common Case)

Correct Path
(Rare Case)

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations .Python Interpreter .

Profiler

Graph
Generator

58

 Overall Workflow on JANUS

Cell

state

Cell

Cell

len == 3
?

Assert

Validate Assumption
for Correctness

len:3

Fast Path
(Common Case)

Correct Path
(Rare Case)

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations .Python Interpreter .

Profiler

Graph
Generator

59

Graph
Cache

 Overall Workflow on JANUS

Cell

state

Cell

Cell

len == 3
?

Assert

len:3

Fast Path
(Common Case)

Correct Path
(Rare Case)

 Symbolic Graph Executor

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations .Python Interpreter .

Profiler

Graph
Generator

60

Graph
Cache

 Overall Workflow on JANUS

Cell

state

Cell

Cell

len == 3
?

Assert

len:3

Fast Path
(Common Case)

Correct Path
(Rare Case)

Cell

state

Cell

Cell

len == 3
?

Assert

 Symbolic Graph Executor

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations .Python Interpreter .

Profiler

Graph
Generator

61

Graph
Cache

 Overall Workflow on JANUS

Assumption
Failure

len:3

Fast Path
(Common Case)

Correct Path
(Rare Case)

 Symbolic Graph Executor

Cell

state

Cell

Cell

len == 3
?

Assert

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations .Python Interpreter .

Profiler

Graph
Generator

62

Graph
Cache

 Overall Workflow on JANUS

len:3

Fast Path
(Common Case)

Correct Path
(Rare Case)

 Imperative Executor

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Pre-defined DL Operations .Python Interpreter .

63

 Overall Workflow on JANUS

len:3

Fast Path
(Common Case)

Correct Path
(Rare Case)

Profiler

Graph
Generator

Graph
Cache

 Imperative Executor

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Pre-defined DL Operations .Python Interpreter .

Profiler

Graph
Generator

64

Graph
Cache

 Overall Workflow on JANUS

len:?

Fast Path
(Common Case)

Correct Path
(Rare Case)

 Imperative Executor

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations .Python Interpreter .

Profiler

Graph
Generator

65

Graph
Cache

 Overall Workflow on JANUS

state

CellSwitch

Merge

i<N

Next

len:?

Fast Path
(Common Case)

Correct Path
(Rare Case)

 Imperative Executor Symbolic Graph Executor

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Pre-defined DL Operations .Python Interpreter .

Profiler

Graph
Generator

66

Graph
Cache

 Overall Workflow on JANUS

Cell

state

Cell

Cell

len == 3
?

Assert

Symbolic DL Graph
len:3

 Imperative Executor

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Pre-defined DL Operations .Python Interpreter .

Profiler

Graph
Generator

67

 Additional System Aspects

 Imperative Execution
for Full Python Coverage

len:3

Global State
ConsistencyPython Coverage

See our paper
for more details!

 Imperative Executor Symbolic Graph Executor

68

 Additional System Aspects

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Pre-defined DL Operations .Python Interpreter .

Cell

state

Cell

Cell

len == 3
?

Assert

Symbolic DL Graph

Fallback

Global State
ConsistencyPython Coverage

69

 Additional System Aspects

“Pure”
Imperative DL Program

def foo(a, b):
 if a > 3:
 return a + b

a b

Add

“Pure”
Symbolic DL Graph

Fallback

 Imperative Executor Symbolic Graph Executor

Pre-defined DL Operations .Python Interpreter .

a > 3 ?

Assert

No Problem

Global State
ConsistencyPython Coverage

 Imperative Executor

Python Interpreter .

70

 Additional System Aspects

Pre-defined DL Operations. .

Python Heap

“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred e
lse pass

Global State
ConsistencyPython Coverage

Symbolic Graph Executor

“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred else pass

“Impure”
Symbolic DL Graph

Python Interpreter .

71

 Additional System Aspects

Pre-defined DL Operations. .

SetAttr

0xb84c “data”

Python Heap

value

Global State
ConsistencyPython Coverage

Symbolic Graph Executor

“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred else pass

“Impure”
Symbolic DL Graph

Python Interpreter .

72

 Additional System Aspects

Pre-defined DL Operations. .

SetAttr

0xb84c “data”

Modified
Python Heap

value

Global State
ConsistencyPython Coverage

“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred else pass

SetAttr

0xb84c “data”

value

pred?

Assert
do_sth

Symbolic Graph Executor

Python Interpreter .

73

 Additional System Aspects

Pre-defined DL Operations. .

Modified
Python Heap

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage

“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred else pass

SetAttr

0xb84c “data”

value

pred?

Assert
do_sth

Symbolic Graph Executor

Python Interpreter .

74

 Additional System Aspects

Pre-defined DL Operations. .

Modified
Python Heap

Assumption
Failure

Unsafe to fallback
after heap update

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage

Symbolic Graph Executor

Python Interpreter .

75

 Additional System Aspects

Pre-defined DL Operations. .

Python Heap Local Copy

“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred else pass

SetAttr

0xb84c “data”

value

pred?

Assert
do_sth

Defer the actual update
by using Local Copy

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage

Symbolic Graph Executor

Python Interpreter .

76

 Additional System Aspects

Pre-defined DL Operations. .

Python Heap

“Impure”
Imperative DL Program

def foo(obj):
 var = obj.data
 obj.data = 123

GetAttr

0xb84c “data”

① Read-Only

SetAttr

0xb84c “data”

123var

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage

Symbolic Graph Executor

Python Interpreter .

77

 Additional System Aspects

Pre-defined DL Operations. .

Python Heap Local Copy

② Copy-On-Write

“Impure”
Imperative DL Program

def foo(obj):
 var = obj.data
 obj.data = 123

GetAttr

0xb84c “data”

SetAttr

0xb84c “data”

123var

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage

Symbolic Graph Executor

Python Interpreter .

78

 Additional System Aspects

Pre-defined DL Operations. .

Python Heap Local Copy

“Impure”
Imperative DL Program

def foo(obj):
 var = obj.data
 obj.data = 123

GetAttr

0xb84c “data”

SetAttr

0xb84c “data”

123var

③ Read & Write

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage

Symbolic Graph Executor

Python Interpreter .

79

 Additional System Aspects

Pre-defined DL Operations. .

Python Heap Local Copy

④ Deferred Writeback

“Impure”
Imperative DL Program

def foo(obj):
 var = obj.data
 obj.data = 123

GetAttr

0xb84c “data”

SetAttr

0xb84c “data”

123var

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage

Implementation

● JANUS: 4700 LoC

● Implemented on top of TensorFlow 1.8.0
○ Symbolic Graph Executor: TensorFlow
○ Imperative Executor: TensorFlow Eager
○ Modification: 771 LoC (custom operations, execution model, …)

● and also on top of CPython 3.5.2
○ Modification: 1096 LoC (for transparent, non-intrusive profiling, ...)

80

Outline

● JANUS

○ Approach

○ Challenges

○ Our Solution

○ Evaluation

● How to handle Recursive Neural Networks?

● On-going Works

81

 Evaluation Setup: Frameworks & Environments

● Frameworks

○ JANUS. Implemented on top of TensorFlow

○ Symbolic. TensorFlow

○ Imperative. TensorFlow Eager

● Hardware & Software Setup

○ 6 machines connected via Mellanox ConnectX-4 cards w/ 100Gbps InfiniBand

○ Each machine w/ 2x(Intel Xeon E5-2695)+6x(NVIDIA GeForce Titan Xp)

○ Ubuntu 16.04, TensorFlow 1.8.0, CUDA 9.0

○ Horovod 0.12.1, NCCL v2.1, OpenMPI v3.0.0
82

Evaluation Setup: Applications

11 models in 5 categories using various dynamic characteristics of Python

● Convolutional Neural Networks (CNN) LeNet, ResNet-50, Inception-v3

● Recurrent Neural Networks (RNN) LSTM, LM

● Recursive Neural Networks (TreeNN) TreeRNN, TreeLSTM

● Deep Reinforcement Learning (DRL) A3C, PPO

● Generative Adversarial Networks (GAN) AN, PIX2PIX

83

ImageNet Test Error with ResNet50

84

ImperativeSymbolic

 Faster

Time

Test Error (%)

36 GPUs

ImageNet Test Error with ResNet50

85

ImperativeSymbolic

Time

Test Error (%)

JANUS

 Faster

36 GPUs

ImageNet Test Error with ResNet50

86

ImperativeSymbolic

Time

Test Error (%)

JANUS

 Faster

36 GPUs

 3.4x Faster Convergence

ImageNet Test Error with ResNet50

87

ImperativeSymbolic

Time

Test Error (%)

JANUS

 Faster

36 GPUs

 3.4x Faster Convergence

Overlapping computation
and communication

Model Convergence

88 Faster

RNN TreeNN

DRL GAN

Imperative
Symbolic

6 GPUs CPU

4 GPUs 1 GPU

Model Convergence

89

3.1x

 Faster

18.4x

2.6x3.2x

Imperative
Symbolic

JANUS
RNN TreeNN

DRL GAN

6 GPUs CPU

4 GPUs 1 GPU

CNN

GAN

DRL

TreeNN

RNN

Normalized Training Throughput

90

LeNet

ResNet-50

Inception-v3

LSTM

LM

TreeRNN

TreeLSTM

A3C

PPO

AN

PIX2PIX

Single Machine

Imp.

Symbolic

47.6x over
Imperative

96.0% of
Symbolic

Imperative JANUS

CNN

GAN

DRL

TreeNN

RNN

Normalized Training Throughput

91

LeNet

ResNet-50

Inception-v3

LSTM

LM

TreeRNN

TreeLSTM

A3C

PPO

AN

PIX2PIX

Single Machine

Imp.

SymbolicImperative JANUS

}
Hand-optimized GPU ops

dominated execution time;

 Working on applying
 further graph optimizations!

CNN

GAN

DRL

TreeNN

RNN

Normalized Training Throughput

92

LeNet

ResNet-50

Inception-v3

LSTM

LM

TreeRNN

TreeLSTM

A3C

PPO

AN

PIX2PIX

Single Machine

Imp.

SymbolicImperative JANUS

}
Details will be

presented soon!

CNN

GAN

DRL

TreeNN

RNN

JANUS Speedup over Imperative Execution

93

LeNet

ResNet-50

Inception-v3

LSTM

LM

TreeRNN

TreeLSTM

A3C

PPO

AN

PIX2PIX

Imp.

Single Machine
JANUS

CNN

GAN

DRL

TreeNN

RNN

JANUS Speedup over Imperative Execution

94

LeNet

ResNet-50

Inception-v3

LSTM

LM

TreeRNN

TreeLSTM

A3C

PPO

AN

PIX2PIX

Imp.

Speedup
“without” specialization

by runtime profiling

Single Machine

Single Machine

CNN

GAN

DRL

TreeNN

RNN

JANUS Speedup over Imperative Execution

95

LeNet

ResNet-50

Inception-v3

LSTM

LM

TreeRNN

TreeLSTM

A3C

PPO

AN

PIX2PIX

Imp.

Speedup
“with” specialization
by runtime profiling

CNN

GAN

DRL

TreeNN

RNN

JANUS Speedup over Imperative Execution

96

LeNet

ResNet-50

Inception-v3

LSTM

LM

TreeRNN

TreeLSTM

A3C

PPO

AN

PIX2PIX

Imp.

Parallel Execution

Control Flow Unrolling

Type Specialization

Composed of CNNs

Single Machine

Related Works

97

● Imperative to symbolic: one-shot converters

○ TensorFlow: defun, AutoGraph, Swift for TensorFlow, JAX, ...
○ PyTorch JIT trace, script
○ MXNet Gluon

● Cannot handle the dynamic semantics of Python correctly & efficiently

 JANUS: Summary

● Programmability and debuggability of imperative DL frameworks
with the performance of symbolic DL frameworks

● Speculative graph generation and execution with runtime profiling

● Up to 47.6x speedup over imperative DL framework,
within up to 4% difference compared to symbolic DL framework,
while transparently and correctly executing imperative DL programs

98

 Outline

● JANUS

● How to handle Recursive Neural Networks?

● On-going Works

99

 Outline

● JANUS

● How to handle Recursive Neural Networks?

● On-going Works
100

Recursive Neural Networks

101

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

Multilayer Perceptron

Convolutional Neural Networks

Recurrent Neural Networks Generative Adversarial Networks

Deep Reinforcement
Learning ModelsRecursive Neural Networks

Recursive Neural Networks

● Apply the same set of weights recursively over structured inputs

● Example: TreeLSTM → Sentiment analysis on sentence parse trees

102
A

sentiment: negative

LSTMLSTM

LSTM

LSTMLSTM

LSTM

LSTM

movie to forget

Recursive Neural Networks

103

● Apply the same set of weights recursively over structured inputs

● Example: TreeLSTM → Sentiment analysis on sentence parse trees

A

sentiment: negative

LSTMLSTM

LSTM

LSTMLSTM

LSTM

LSTM

movie to forget This

sentiment: negative

LSTMLSTM

LSTM

LSTMLSTM

LSTM

movie is forgettable

LSTM

How to Implement TreeLSTM?

104

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

How to Implement TreeLSTM?

105

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Imperative Program Symbolic DL Graph

How to Implement TreeLSTM?

106

Imperative Program
def TreeLSTM(node):
 if node.is_leaf:

 return LSTM(node.word)
 else:

 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

for tree in trees:
 TreeLSTM(tree)

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

SymbolicImperative

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Symbolic DL Graph

How to Implement TreeLSTM?

107

Imperative Program
def TreeLSTM(node):
 if node.is_leaf:

 return LSTM(node.word)
 else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)

 return LSTM(lstate, rstate)
for tree in trees:
 TreeLSTM(tree)

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

SymbolicImperative

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Symbolic DL Graph

How to Implement TreeLSTM?

108

Imperative Program
def TreeLSTM(node):
 if node.is_leaf:

 return LSTM(node.word)
 else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)

 return LSTM(lstate, rstate)
for tree in trees:
 TreeLSTM(tree)

SymbolicImperative

Symbolic DL Graph

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

How to Implement TreeLSTM?

109

Imperative Program
def TreeLSTM(node):
 if node.is_leaf:

 return LSTM(node.word)
 else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)

 return LSTM(lstate, rstate)
for tree in trees:
 TreeLSTM(tree)

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

SymbolicImperative

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Symbolic DL Graph

How to Implement TreeLSTM?

110

Imperative Program
def TreeLSTM(node):
 if node.is_leaf:

 return LSTM(node.word)
 else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)

 return LSTM(lstate, rstate)
for tree in trees:
 TreeLSTM(tree)

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

SymbolicImperative

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Symbolic DL Graph

Symbolic DL Graph

How to Execute TreeLSTM?

111

Imperative Program
def TreeLSTM(node):
 if node.is_leaf:

 return LSTM(node.word)
 else:

 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

for tree in trees:
 TreeLSTM(tree)

SymbolicImperative

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Parallelly
Executable

LSTM

multiple children
of a tree

multiple functions
in a LSTM cell

How to Execute TreeLSTM?

112

Imperative Program
def TreeLSTM(node):
 if node.is_leaf:

 return LSTM(node.word)
 else:

 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

for tree in trees:
 TreeLSTM(tree)

Symbolic DL Graph

Preferred?!

SymbolicImperative

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

No
Parallelism

New graph for every sentence?
High graph gen&opt overhead

How to represent
all potential input structures

in a single graph? ?

Problem Statement

113

⚠ Expressiveness:
How to express recursive structures as a symbolic graph?

⚠ Performance:
How to exploit parallelism?

Up to 30.2x faster training, 147.9x faster inference
(Implemented on top of TensorFlow, compared to PyTorch)

Our Solution

✔ Expressiveness:
How to express recursive structures as a symbolic graph?

⇒ Abstractions for expressing recursion in symbolic DL graphs

✔ Performance:
How to exploit parallelism?

⇒ A System that executes such abstractions in parallel

114

 Outline

● JANUS

● How to handle Recursive Neural Networks?

○ Motivation

○ New Abstractions

○ Underlying System

○ TreeLSTM on JANUS

● On-going Works

115

Abstractions for Recursion

116

subgraph TreeLSTM(node):
left = TreeLSTM(node.left)
right = TreeLSTM(node.right)
return LSTM(left, right)

root_sentiment = TreeLSTM(sentence)

LSTM

sentiment

SubGraph

Abstractions for Recursion

117

A movie to forget

sentiment

LSTMLSTM

LSTM

LSTMLSTM

LSTM

LSTM

Unit of recursion:
SubGraph

Abstractions for Recursion

118

A

sentiment

LSTM LSTM

LSTM

movie to forget

LSTM

sentiment

SubGraph

Execute the
SubGraph:
InvokeOp

Abstractions for Recursion

119

sentiment

LSTM

(A, movie) (to, forget)

LSTM

sentiment

SubGraph

Execute the
SubGraph:
InvokeOp

Abstractions for Recursion

120

sentiment

((A, movie), (to, forget))

LSTM

sentiment

SubGraph

Execute the
SubGraph:
InvokeOp

Abstractions for Recursion

121

sentiment

((A, movie), (to, forget))

InvokeOp

sentiment

LSTM
SubGraph

“Execute the
same SubGraph

recursively”

SubGraph invocation:
InvokeOp

 Outline

● JANUS

● How to handle Recursive Neural Networks?

○ Motivation

○ New Abstractions

○ Underlying System

○ TreeLSTM on JANUS

● On-going Works

122

Underlying System

123

Worker

Master

Graph Parser
InvokeOp

Op

Client

SubGraph

Ready
Queue

Execution
Thread Pool

Waiting
Operations

(1)(1)
(2) (2)

sentence

sentiment

Execution Model Evaluation Autodiff

Underlying System

124

Graph Parser

Ready
Queue

Execution
Thread Pool

Waiting
Operations

Current status
sentiment

((A, movie), (to, forget))

Execution Model Evaluation Autodiff

Underlying System

Current status

125

Graph Parser

Ready
Queue

Execution
Thread Pool

Waiting
Operations LSTM

LSTM

(A, movie) (to, forget)

sentiment

LSTM

Execution Model Evaluation Autodiff

Underlying System

Current status

126

Graph Parser

Ready
Queue

Execution
Thread Pool

Waiting
Operations

LSTM

sentiment

LSTM

A

LSTM LSTM

LSTM

movie to forget

LSTM

LSTMLSTM

Execution Model Evaluation Autodiff

Underlying System

Current status

127

Graph Parser

Ready
Queue

Execution
Thread Pool

Waiting
Operations

sentiment

LSTMLSTMLSTM

A movie to forget

LSTMLSTM

LSTM

LSTMLSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTMLSTMLSTMLSTM

Execution Model Evaluation Autodiff

Underlying System

Current status

128

Graph Parser

Ready
Queue

Execution
Thread Pool

Waiting
Operations

sentiment

LSTMLSTMLSTM

A movie to forget

LSTMLSTM

LSTM

LSTMLSTM

LSTM

LSTM

LSTM

LSTM

LSTMLSTM

Execution Model Evaluation Autodiff

Underlying System

Current status

129

Graph Parser

Ready
Queue

Execution
Thread Pool

Waiting
Operations

sentiment

LSTM

A movie to forget

LSTMLSTM

LSTM

LSTMLSTM

LSTM

LSTM

LSTM LSTM

Execution Model Evaluation Autodiff

Underlying System Evaluation

Current status

130

Graph Parser

Ready
Queue

Execution
Thread Pool

Waiting
Operations

sentiment

A movie to forget

LSTMLSTM

LSTM

LSTMLSTM

LSTM

LSTM

Execution Model Autodiff

Underlying System

131

Execution Model Evaluation Autodiff

TreeRNN TreeLSTM

batch size batch size

Training Throughput (instances/s)
(Sentiment classification with IMDB)

 Recursive on TensorFlow

 Unrolling on PyTorch

Underlying System

132

batch size

TreeRNN TreeLSTM

batch size

Execution Model Evaluation Autodiff

 Recursive on TensorFlow

 Unrolling on PyTorchInference Throughput (instances/s)
(Sentiment classification with IMDB)

133

Underlying System

b

a

“Feedforward”

Framework builds back-
propagation graph for user

c

“Backpropagation”

Forward computation values
must be retained for
backward computations

b

c

a

Execution Model Evaluation Autodiff

HashTable

pos val

L

R

Underlying System

[Issue 1] Building back-prop graph for SubGraphs and InvokeOps

[Issue 2] Retaining the forward values with random execution order

[Solution] Recursive backward SubGraph with hash tables

134

Forward
SubGraph

Backward
SubGraph

Execution Model Evaluation Autodiff

HashTable

pos val

L

R

Underlying System

[Issue 1] Building back-prop graph for SubGraphs and InvokeOps

[Issue 2] Retaining the forward values with random execution order

[Solution] Recursive backward SubGraph with hash tables

135

Forward
SubGraph

Backward
SubGraph

⇒ Refer to our paper for more details!

Execution Model Evaluation Autodiff

Recursion for Symbolic DL Frameworks: Summary

● Improved expressiveness with abstractions SubGraphs and InvokeOps
to program recursive neural networks

● Improved performance by recursively executing neural networks
while exploiting parallelism

136

 Outline

● JANUS

● How to handle Recursive Neural Networks?

○ Motivation

○ New Abstractions

○ Underlying System

○ TreeLSTM on JANUS

● On-going Works

137

def TreeLSTM(node):
if node.is_leaf:
 return LSTM(embed(node.word))
else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

TreeLSTM on JANUS

138

nodenode

node

node

node

node

node

nodenode

node

nodenode

node

node

movie to forgetA

Run GraphGen. GraphProfiling

TreeLSTM on JANUS

139

def TreeLSTM(node):
if node.is_leaf:
 return LSTM(embed(node.word))
else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

nodenode

node

node

node

node

node

nodenode

node

nodenode

node

node

movie to forgetA

Run GraphGen. GraphProfiling

TreeLSTM on JANUS

140

def TreeLSTM(node):
if node.is_leaf:
 return LSTM(embed(node.word))
else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

nodenode

node

node

node

node

node

nodenode

node

nodenode

node

node

movie to forgetA

boolean

Gen. GraphProfilingpython
object

string

Run Graph

python
object

python
object

TreeLSTM on JANUS

141

def TreeLSTM(node):
if node.is_leaf:
 return LSTM(embed(node.word))
else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

nodenode

node

node

node

node

node

nodenode

node

nodenode

node

node

movie to forgetA

Gen. GraphProfiling Run Graph

recursive
call
recursive

call

SubGraph

TreeLSTM on JANUS

142

def TreeLSTM(node):
if node.is_leaf:
 return LSTM(embed(node.word))
else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

Gen. Graph Run GraphProfiling

state

Placeholder
(node)

?

SubGraph

TreeLSTM on JANUS

143

def TreeLSTM(node):
if node.is_leaf:
 return LSTM(embed(node.word))
else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

Gen. Graph Run GraphProfiling

state

Placeholder
(node)

Merge

SwitchAttr
(leaf)

??

SubGraph

TreeLSTM on JANUS

144

def TreeLSTM(node):
if node.is_leaf:
 return LSTM(embed(node.word))
else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

Gen. Graph Run GraphProfiling

state

LSTM

Attr
(word)

Placeholder
(node)

Merge

SwitchAttr
(leaf)

emb ?

SubGraph

Invoke
Op

TreeLSTM on JANUS

145

def TreeLSTM(node):
if node.is_leaf:
 return LSTM(embed(node.word))
else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

Gen. Graph Run GraphProfiling

state

LSTM

Attr
(word)

Placeholder
(node)

LSTM

Attr
(left)

Attr
(right)

Merge

SwitchAttr
(leaf)

Invoke
Opemb

TreeLSTM on JANUS

146

def TreeLSTM(node):
if node.is_leaf:
 return LSTM(embed(node.word))
else:
 lstate = TreeLSTM(node.left)
 rstate = TreeLSTM(node.right)
 return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

Run GraphGen. GraphProfiling

SubGraph

Invoke
Op

state

LSTM

Attr
(word)

Placeholder
(node)

LSTM

Attr
(left)

Attr
(right)

Merge

SwitchAttr
(leaf)

Invoke
Opemb

TreeLSTM on JANUS

147

Run GraphGen. GraphProfiling

SubGraph

Invoke
Op

state

LSTM

Attr
(word)

Placeholder
(node)

LSTM

Attr
(left)

Attr
(right)

Merge

SwitchAttr
(leaf)

Invoke
Opemb

sentiment

root

LSTM

root.left root.right

sentiment

sentiment

l

LSTM LSTM

LSTM

r l r

sentiment

A movie to forget

LSTMLSTM

LSTM

LSTMLSTM

LSTM

LSTM

Parallel
Execution

RNN

CNN

GAN

DRL

TreeNN

TreeLSTM on JANUS: Normalized Training Throughput

148

LeNet

ResNet-50

Inception-v3

LSTM

LM

TreeRNN
TreeLSTM

A3C

PPO

AN

PIX2PIX

Single Machine

Imp.

SymbolicImperative JANUS

Outline

● JANUS

● How to handle Recursive Neural Networks?

● On-going Works

149

On-Going Works

● Open-Source
○ On top of TensorFlow 2.0
○ Collaboration with Google Brain TensorFlow AutoGraph team

● Improving JANUS
○ Transparent and fast profiler with un-modified Python interpreter
○ Integrate more powerful backend graph executors: TVM, XLA, …

● Other Works
○ Parallax (EuroSys’ 19): Sparsity-aware distributed training of DL models
○ Optimizing hyper-parameter optimization jobs for DL

150

Thank You!

151

