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Deep Learning (DL) Frameworks

Define & Execute
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Outline

● JANUS

● How to handle Recursive Neural Networks?

● On-going Works
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Symbolic DL Frameworks

✓ Build a Symbolic Graph
✓ Execute the Graph

def build_graph(g):
  x = g.input(float)
  linear = g.add(g.mul(W, x), b)

build_graph(graph)
run_graph(graph, x_data)

Imperative DL Frameworks

✓ Directly Execute the Computations

Two Paradigms

x
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W

b
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Symbolic DL Frameworks

+ Easy to Optimize
+ Compiler Optimization
+ Parallel Execution of Operations
+ Deploy on GPU, Cluster, Mobile, ...

- Decoupled View:
Hard to Program & Debug

Imperative DL Frameworks

+ Direct Execution:
Easy to Program & Debug

- Hard to Optimize

Pros & Cons

 Pros

 Cons
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Symbolic DL Frameworks

+ Easy to Optimize
+ Compiler Optimization
+ Parallel Execution of Operations
+ Deploy on GPU, Cluster, Mobile,...

- Decoupled View:
Hard to Program & Debug

Imperative DL Frameworks

+ Direct Execution:
Easy to Program & Debug

- Hard to Optimize

What People Want Is...

 Pros
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Imperative DL Program

def foo(x):
  prod = mul(3, x)
  return add(prod, 2)

JANUS: Combining the Best of Both Worlds

23

Symbolic DL Graph
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3
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“Easy Programmability” “High Performance”

Transparent
Conversion



JANUS: Combining the Best of Both Worlds
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● 11 models in 5 major neural network categories:
○ Convolutional Neural Networks (CNN) LeNet, ResNet-50, Inception-v3
○ Recurrent Neural Networks (RNN) LSTM, LM
○ Recursive Neural Networks (TreeNN) TreeRNN, TreeLSTM
○ Generative Adversarial Networks (GAN) GAN, PIX2PIX
○ Deep Reinforcement Learning (DRL) A3C, PPO

● Up to 47.6x speedup compared to imperative DL framework,
comparable performance (within 4%) to symbolic DL framework
with unmodified imperative DL programs



Outline

● JANUS

○ Approach

○ Challenges

○ Our Solution

○ Evaluation

● How to handle Recursive Neural Networks?

● On-going Works
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Challenges in Graph Conversion
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Challenges in Graph Conversion
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Imperative Python DL Program

def foo(x):
  tmp = mul(3, x)
  return add(tmp, 2)
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Symbolic DL Graph
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2

De-facto Standard Language
for DL Programming
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Discrepancy between Python Programs and DL Graphs
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“Dynamic” “Static”
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Transparent
Conversion

Discrepancy between Python Programs and DL Graphs
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?
Characteristics
● determined at runtime
● change at runtime

“Dynamic” “Static”
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Transparent
Conversion

Discrepancy between Python Programs and DL Graphs
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Symbolic DL Graph

INT, 10x1
x
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Characteristics
● must be given

when building a graph
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Imperative Python DL Program
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Imperative Python DL Program

def foo(x):
  tmp = mul(3, x)
  return add(tmp, 2)

Transparent
Conversion

Discrepancy between Python Programs and DL Graphs
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Symbolic DL Graph
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when building a graph

?
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● change at runtime

“Dynamic” “Static”

DST:
NEED INFO
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class RNNModel(object):
def __call__(self, sequence):

state = self.state
outputs = []
for item in sequence:

state = rnn_cell(state, item)
outputs += [state]

self.state = state
return compute_loss(outputs)

for sequence in sequences:
optimize(lambda: model(sequence))

Example: Recurrent Neural Network (RNN)

33

Correctness & Performance

of Graph Execution

Dynamic Features of Python

√ Dynamic Control Flow

√ Dynamic Types

√ Impure Functions

?
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RNN Example
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RNN Example

● Correct
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RNN Example

● Correct
● Slow
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RNN Example

● Correct
● Slow

● Fast
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RNN Example

● Correct
● Slow

● Fast
● Incorrect
● Need Info
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Challenge:

achieving Correctness & Performance at the same time

Challenge Summary

50

Imperative Python DL Program
with Dynamic Features

Fast & Correct
Symbolic DL Graph?



Challenge:

achieving Correctness & Performance at the same time

Challenge Summary

51

Imperative Python DL Program
with Dynamic Features

Correct
Graph

Fast
Graph

Slow

Incorrect



Challenge:

achieving Correctness & Performance at the same time

Challenge Summary

52

Imperative Python DL Program
with Dynamic Features

Correct
Graph

Fast
Graph

Slow

Incorrect



 Outline

● JANUS

○ Approach

○ Challenges

○ Our Solution

○ Evaluation

● How to handle Recursive Neural Networks?

● On-going Works
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 Solution: Speculative Graph Generation and Execution 

● Goal: Correctness & Performance

● [Performance] Speculatively Specialize the Graph
○ Make reasonable assumptions based on the execution history (Profiling)
○ Run specialized graph (Common Case)

● [Correctness] Validate Assumptions
○ Fallback if an assumption is broken (Rare Case)

54



Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

   Imperative Executor

Pre-defined DL Operations         .Python Interpreter        .

 Overall Workflow on JANUS
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Profiler
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for Transparent Profiling
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● Reaching Definition Analysis
● Type inference
● Constant Propagation
● ...
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   Imperative Executor

Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

Pre-defined DL Operations         .Python Interpreter        .
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   Imperative Executor

Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

Pre-defined DL Operations         .Python Interpreter        .

Profiler

Graph
Generator
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   Imperative Executor

Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations         .Python Interpreter        .

Profiler

Graph
Generator

65

Graph 
Cache

 Overall Workflow on JANUS

state

CellSwitch

Merge

i<N

Next

len:?

Fast Path
(Common Case)

Correct Path
(Rare Case)



   Imperative Executor    Symbolic Graph Executor

Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

Pre-defined DL Operations         .Python Interpreter        .

Profiler

Graph
Generator
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Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

Pre-defined DL Operations         .Python Interpreter        .

Profiler

Graph
Generator
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 Additional System Aspects

 Imperative Execution 
for Full Python Coverage

len:3

Global State
ConsistencyPython Coverage

See our paper 
for more details!
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Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

Pre-defined DL Operations         .Python Interpreter        .

Cell

state

Cell

Cell

len == 3
?

Assert

Symbolic DL Graph

Fallback

Global State
ConsistencyPython Coverage
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 Additional System Aspects

“Pure”
Imperative DL Program

def foo(a, b):
  if a > 3:
    return a + b

a b

Add

“Pure”
Symbolic DL Graph

Fallback

   Imperative Executor    Symbolic Graph Executor

Pre-defined DL Operations         .Python Interpreter        .

a > 3 ?

Assert

No Problem

Global State
ConsistencyPython Coverage
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Pre-defined DL Operations.    .

Python Heap

“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred e
lse pass
  

Global State
ConsistencyPython Coverage



Symbolic Graph Executor

“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred else pass
  

“Impure”
Symbolic DL Graph

Python Interpreter        .
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Symbolic Graph Executor

“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred else pass
  

“Impure”
Symbolic DL Graph

Python Interpreter        .
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“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred else pass
  

SetAttr

0xb84c “data”

value

pred?

Assert
do_sth

Symbolic Graph Executor

Python Interpreter        .
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“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred else pass
  

SetAttr

0xb84c “data”

value

pred?

Assert
do_sth

Symbolic Graph Executor

Python Interpreter        .
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 Additional System Aspects

Pre-defined DL Operations.    .

Modified
Python Heap

Assumption
Failure

Unsafe to fallback 
after heap update

“Impure”
Symbolic DL Graph

Global State
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Symbolic Graph Executor

Python Interpreter        .
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 Additional System Aspects

Pre-defined DL Operations.    .

Python Heap Local Copy

“Impure”
Imperative DL Program

def foo(obj):
 obj.data = value
 do_sth if pred else pass
  

SetAttr

0xb84c “data”

value

pred?

Assert
do_sth

Defer the actual update
by using Local Copy

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage



Symbolic Graph Executor

Python Interpreter        .
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 Additional System Aspects

Pre-defined DL Operations.    .

Python Heap

“Impure”
Imperative DL Program

def foo(obj):
  var = obj.data
  obj.data = 123
  

GetAttr

0xb84c “data”

① Read-Only

SetAttr

0xb84c “data”

123var

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage



Symbolic Graph Executor
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 Additional System Aspects

Pre-defined DL Operations.    .

Python Heap Local Copy

② Copy-On-Write

“Impure”
Imperative DL Program

def foo(obj):
  var = obj.data
  obj.data = 123
  

GetAttr

0xb84c “data”

SetAttr

0xb84c “data”

123var

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage



Symbolic Graph Executor
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 Additional System Aspects

Pre-defined DL Operations.    .

Python Heap Local Copy

“Impure”
Imperative DL Program

def foo(obj):
  var = obj.data
  obj.data = 123
  

GetAttr

0xb84c “data”

SetAttr

0xb84c “data”

123var

③ Read & Write

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage



Symbolic Graph Executor
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 Additional System Aspects

Pre-defined DL Operations.    .

Python Heap Local Copy

④ Deferred Writeback

“Impure”
Imperative DL Program

def foo(obj):
  var = obj.data
  obj.data = 123
  

GetAttr

0xb84c “data”

SetAttr

0xb84c “data”

123var

“Impure”
Symbolic DL Graph

Global State
ConsistencyPython Coverage



Implementation

● JANUS: 4700 LoC

● Implemented on top of TensorFlow 1.8.0
○ Symbolic Graph Executor: TensorFlow
○ Imperative Executor: TensorFlow Eager
○ Modification: 771 LoC (custom operations, execution model, …)

● and also on top of CPython 3.5.2
○ Modification: 1096 LoC (for transparent, non-intrusive profiling, ...)
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Outline

● JANUS

○ Approach

○ Challenges

○ Our Solution

○ Evaluation

● How to handle Recursive Neural Networks?

● On-going Works
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 Evaluation Setup: Frameworks & Environments

● Frameworks

○  JANUS. Implemented on top of TensorFlow

○  Symbolic. TensorFlow

○  Imperative. TensorFlow Eager

● Hardware & Software Setup

○ 6 machines connected via Mellanox ConnectX-4 cards w/ 100Gbps InfiniBand

○ Each machine w/ 2x(Intel Xeon E5-2695)+6x(NVIDIA GeForce Titan Xp)

○ Ubuntu 16.04, TensorFlow 1.8.0, CUDA 9.0

○ Horovod 0.12.1, NCCL v2.1, OpenMPI v3.0.0
82



Evaluation Setup: Applications

11 models in 5 categories using various dynamic characteristics of Python

● Convolutional Neural Networks (CNN) LeNet, ResNet-50, Inception-v3

● Recurrent Neural Networks (RNN) LSTM, LM

● Recursive Neural Networks (TreeNN) TreeRNN, TreeLSTM

● Deep Reinforcement Learning (DRL) A3C, PPO

● Generative Adversarial Networks (GAN) AN, PIX2PIX
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ImageNet Test Error with ResNet50
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ImageNet Test Error with ResNet50
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ImageNet Test Error with ResNet50
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ImperativeSymbolic

Time

Test Error (%)

JANUS

      Faster

36 GPUs

     3.4x Faster Convergence

Overlapping computation
and communication



Model Convergence

88      Faster
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DRL GAN
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6 GPUs CPU
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Model Convergence
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3.1x

      Faster

18.4x

2.6x3.2x

Imperative
Symbolic

JANUS
RNN TreeNN

DRL GAN

6 GPUs CPU

4 GPUs 1 GPU
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LeNet

ResNet-50

Inception-v3

LSTM

LM

TreeRNN

TreeLSTM

A3C

PPO

AN

PIX2PIX

Single Machine

Imp.

SymbolicImperative JANUS

}
Hand-optimized GPU ops

dominated execution time;

 Working on applying
 further graph optimizations!
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LeNet

ResNet-50

Inception-v3

LSTM

LM

TreeRNN

TreeLSTM

A3C

PPO

AN

PIX2PIX

Single Machine

Imp.

SymbolicImperative JANUS

}
Details will be 

presented soon!
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Single Machine
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JANUS Speedup over Imperative Execution
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LeNet

ResNet-50

Inception-v3

LSTM

LM

TreeRNN

TreeLSTM

A3C

PPO

AN

PIX2PIX

Imp.

Parallel Execution

Control Flow Unrolling

Type Specialization

Composed of CNNs

Single Machine



Related Works

97

● Imperative to symbolic: one-shot converters

○ TensorFlow: defun, AutoGraph, Swift for TensorFlow, JAX, ...
○ PyTorch JIT trace, script
○ MXNet Gluon

● Cannot handle the dynamic semantics of Python correctly & efficiently



 JANUS: Summary

● Programmability and debuggability of imperative DL frameworks
with the performance of symbolic DL frameworks

● Speculative graph generation and execution with runtime profiling

● Up to 47.6x speedup over imperative DL framework,
within up to 4% difference compared to symbolic DL framework,
while transparently and correctly executing imperative DL programs
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 Outline

● JANUS

● How to handle Recursive Neural Networks?

● On-going Works
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 Outline

● JANUS

● How to handle Recursive Neural Networks?

● On-going Works
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Recursive Neural Networks

101

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

Multilayer Perceptron

Convolutional Neural Networks

Recurrent Neural Networks Generative Adversarial Networks

Deep Reinforcement
Learning ModelsRecursive Neural Networks



Recursive Neural Networks

● Apply the same set of weights recursively over structured inputs

● Example: TreeLSTM  →  Sentiment analysis on sentence parse trees

102
A

sentiment: negative

LSTMLSTM

LSTM

LSTMLSTM

LSTM

LSTM

movie to forget



Recursive Neural Networks
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● Apply the same set of weights recursively over structured inputs

● Example: TreeLSTM  →  Sentiment analysis on sentence parse trees

A

sentiment: negative

LSTMLSTM

LSTM

LSTMLSTM

LSTM

LSTM

movie to forget This

sentiment: negative

LSTMLSTM

LSTM

LSTMLSTM

LSTM

movie is forgettable

LSTM



How to Implement TreeLSTM?
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LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM



How to Implement TreeLSTM?
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LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Imperative Program Symbolic DL Graph



How to Implement TreeLSTM?
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Imperative Program
def TreeLSTM(node):
   if node.is_leaf:

  return LSTM(node.word)
   else:

  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

for tree in trees:
   TreeLSTM(tree)

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

SymbolicImperative

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Symbolic DL Graph



How to Implement TreeLSTM?
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Imperative Program
def TreeLSTM(node):
   if node.is_leaf:

  return LSTM(node.word)
   else:
     lstate = TreeLSTM(node.left)
     rstate = TreeLSTM(node.right)

  return LSTM(lstate, rstate)
for tree in trees:
   TreeLSTM(tree)

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

SymbolicImperative

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Symbolic DL Graph



How to Implement TreeLSTM?
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Imperative Program
def TreeLSTM(node):
   if node.is_leaf:

  return LSTM(node.word)
   else:
     lstate = TreeLSTM(node.left)
     rstate = TreeLSTM(node.right)

  return LSTM(lstate, rstate)
for tree in trees:
   TreeLSTM(tree)

SymbolicImperative

Symbolic DL Graph

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

LSTM LSTM LSTM LSTM

LSTM

LSTM
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How to Implement TreeLSTM?
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Imperative Program
def TreeLSTM(node):
   if node.is_leaf:

  return LSTM(node.word)
   else:
     lstate = TreeLSTM(node.left)
     rstate = TreeLSTM(node.right)

  return LSTM(lstate, rstate)
for tree in trees:
   TreeLSTM(tree)

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

SymbolicImperative

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Symbolic DL Graph



How to Implement TreeLSTM?
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Imperative Program
def TreeLSTM(node):
   if node.is_leaf:

  return LSTM(node.word)
   else:
     lstate = TreeLSTM(node.left)
     rstate = TreeLSTM(node.right)

  return LSTM(lstate, rstate)
for tree in trees:
   TreeLSTM(tree)

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

SymbolicImperative

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Symbolic DL Graph



Symbolic DL Graph

How to Execute TreeLSTM?
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Imperative Program
def TreeLSTM(node):
   if node.is_leaf:

  return LSTM(node.word)
   else:

  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

for tree in trees:
   TreeLSTM(tree)

SymbolicImperative

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

Parallelly
Executable

LSTM

multiple children
of a tree

multiple functions
in a LSTM cell



How to Execute TreeLSTM?
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Imperative Program
def TreeLSTM(node):
   if node.is_leaf:

  return LSTM(node.word)
   else:

  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

for tree in trees:
   TreeLSTM(tree)

Symbolic DL Graph

Preferred?!

SymbolicImperative

LSTM

LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTM

LSTM LSTM LSTM LSTM

LSTM

LSTM

LSTM

No
Parallelism

New graph for every sentence?
High graph gen&opt overhead

How to represent
all potential input structures

in a single graph? ?



Problem Statement

113

⚠ Expressiveness:
How to express recursive structures as a symbolic graph?

⚠ Performance:
How to exploit parallelism?



Up to 30.2x faster training, 147.9x faster inference
(Implemented on top of TensorFlow, compared to PyTorch)

Our Solution

✔ Expressiveness:
How to express recursive structures as a symbolic graph?

⇒ Abstractions for expressing recursion in symbolic DL graphs

✔ Performance:
How to exploit parallelism?

⇒ A System that executes such abstractions in parallel

114



 Outline

● JANUS

● How to handle Recursive Neural Networks?

○ Motivation

○ New Abstractions

○ Underlying System

○ TreeLSTM on JANUS

● On-going Works

115



Abstractions for Recursion

116

subgraph TreeLSTM(node):
left = TreeLSTM(node.left)
right = TreeLSTM(node.right)
return LSTM(left, right)

root_sentiment = TreeLSTM(sentence)



LSTM

sentiment

SubGraph

Abstractions for Recursion
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A movie to forget

sentiment

LSTMLSTM

LSTM

LSTMLSTM

LSTM

LSTM

Unit of recursion: 
SubGraph



Abstractions for Recursion
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Execute the 
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Abstractions for Recursion
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SubGraph

Execute the 
SubGraph:
InvokeOp



Abstractions for Recursion
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sentiment

((A, movie), (to, forget))

LSTM

sentiment

SubGraph

Execute the 
SubGraph:
InvokeOp



Abstractions for Recursion
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sentiment

((A, movie), (to, forget))

InvokeOp

sentiment

LSTM
SubGraph

“Execute the 
same SubGraph 

recursively”

SubGraph invocation:
InvokeOp



 Outline

● JANUS

● How to handle Recursive Neural Networks?

○ Motivation

○ New Abstractions

○ Underlying System

○ TreeLSTM on JANUS

● On-going Works
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Underlying System
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Worker

Master

Graph Parser
InvokeOp

Op

Client

SubGraph

Ready
Queue

Execution
Thread Pool

Waiting
Operations

(1)(1)
(2) (2)

sentence

sentiment

Execution Model Evaluation Autodiff



Underlying System
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Graph Parser

Ready
Queue

Execution
Thread Pool

Waiting
Operations

Current status
sentiment

((A, movie), (to, forget))

Execution Model Evaluation Autodiff



Underlying System

Current status
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Graph Parser

Ready
Queue

Execution
Thread Pool

Waiting
Operations LSTM

LSTM

(A, movie) (to, forget)

sentiment

LSTM

Execution Model Evaluation Autodiff



Underlying System

Current status
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Graph Parser

Ready
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Thread Pool
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movie to forget
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Underlying System

Current status
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Graph Parser

Ready
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Underlying System

Current status
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Graph Parser
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Underlying System

Current status
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Graph Parser

Ready
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sentiment
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Underlying System Evaluation

Current status
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Graph Parser

Ready
Queue

Execution
Thread Pool

Waiting
Operations

sentiment

A movie to forget

LSTMLSTM

LSTM

LSTMLSTM

LSTM
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Execution Model Autodiff



Underlying System
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Execution Model Evaluation Autodiff

TreeRNN TreeLSTM

batch size batch size

Training Throughput (instances/s)
(Sentiment classification with IMDB)

           Recursive on TensorFlow

           Unrolling on PyTorch



Underlying System
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batch size

TreeRNN TreeLSTM

batch size

Execution Model Evaluation Autodiff

           Recursive on TensorFlow

           Unrolling on PyTorchInference Throughput (instances/s)
(Sentiment classification with IMDB)
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Underlying System

b

a

“Feedforward”

Framework builds back-
propagation graph for user

c

“Backpropagation”

Forward computation values 
must be retained for 
backward computations

b

c

a

Execution Model Evaluation Autodiff



HashTable

pos val

L

R

Underlying System

[Issue 1] Building back-prop graph for SubGraphs and InvokeOps

[Issue 2] Retaining the forward values with random execution order

[Solution] Recursive backward SubGraph with hash tables

134

Forward
SubGraph

Backward
SubGraph

Execution Model Evaluation Autodiff



HashTable

pos val

L

R

Underlying System

[Issue 1] Building back-prop graph for SubGraphs and InvokeOps

[Issue 2] Retaining the forward values with random execution order

[Solution] Recursive backward SubGraph with hash tables
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Forward
SubGraph

Backward
SubGraph

⇒ Refer to our paper for more details!

Execution Model Evaluation Autodiff



Recursion for Symbolic DL Frameworks: Summary

● Improved expressiveness with abstractions SubGraphs and InvokeOps
to program recursive neural networks

● Improved performance by recursively executing neural networks
while exploiting parallelism

136



 Outline

● JANUS

● How to handle Recursive Neural Networks?

○ Motivation

○ New Abstractions

○ Underlying System

○ TreeLSTM on JANUS

● On-going Works
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def TreeLSTM(node):
if node.is_leaf:
  return LSTM(embed(node.word))
else:
  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

TreeLSTM on JANUS
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nodenode

node

node

node

node

node

nodenode

node

nodenode

node

node

movie to forgetA

Run GraphGen. GraphProfiling



TreeLSTM on JANUS
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def TreeLSTM(node):
if node.is_leaf:
  return LSTM(embed(node.word))
else:
  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)
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def TreeLSTM(node):
if node.is_leaf:
  return LSTM(embed(node.word))
else:
  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)
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def TreeLSTM(node):
if node.is_leaf:
  return LSTM(embed(node.word))
else:
  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)
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node

node

node
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def TreeLSTM(node):
if node.is_leaf:
  return LSTM(embed(node.word))
else:
  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

Gen. Graph Run GraphProfiling

state
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(node)
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def TreeLSTM(node):
if node.is_leaf:
  return LSTM(embed(node.word))
else:
  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)

Gen. Graph Run GraphProfiling
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def TreeLSTM(node):
if node.is_leaf:
  return LSTM(embed(node.word))
else:
  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)
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def TreeLSTM(node):
if node.is_leaf:
  return LSTM(embed(node.word))
else:
  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)
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def TreeLSTM(node):
if node.is_leaf:
  return LSTM(embed(node.word))
else:
  lstate = TreeLSTM(node.left)
  rstate = TreeLSTM(node.right)
  return LSTM(lstate, rstate)

trees = parse(sentences)
for tree in trees:

root_state = TreeLSTM(tree)
sentiment = project(root_state)
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Run GraphGen. GraphProfiling

SubGraph
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RNN

CNN
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TreeNN

TreeLSTM on JANUS: Normalized Training Throughput
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Outline

● JANUS

● How to handle Recursive Neural Networks?

● On-going Works
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On-Going Works

● Open-Source
○ On top of TensorFlow 2.0
○ Collaboration with Google Brain TensorFlow AutoGraph team

● Improving JANUS
○ Transparent and fast profiler with un-modified Python interpreter
○ Integrate more powerful backend graph executors: TVM, XLA, …

● Other Works
○ Parallax (EuroSys’ 19): Sparsity-aware distributed training of DL models
○ Optimizing hyper-parameter optimization jobs for DL
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Thank You!
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